Abstract

Although the ability to sense temperature is critical for many organisms, the underlying mechanisms are poorly understood. Using the calcium reporter yellow cameleon 2.1 and electrophysiological recordings, we identified thermosensitive neurons and examined their physiologic response in Drosophila melanogaster larvae. In the head, terminal sensory organ neurons showed increased activity in response to cooling by < or =1 degrees C, heating reduced their basal activity, and different units showed distinct response patterns. Neither cooling nor heating affected dorsal organ neurons. Body wall neurons showed a variety of distinct response patterns to both heating and cooling; the diverse thermal responses were strikingly similar to those described in mammals. These data establish a functional map of thermoresponsive neurons in Drosophila larvae and provide a foundation for understanding mechanisms of thermoreception in both insects and mammals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.