Abstract

The WUSCHEL-related homeobox (WOX) gene family are key players in the rooting process. Eucalyptus is an important plant species of artificial forests in China. It is mainly grown through tissue culture of many excellent clonal materials, in which rooting is a key step. In the present study, by using the genome data of Eucalyptus grandis, Corymbia citriodora, E. pellita, and E. urophylla × E. grandis, the members of the eucalyptus WOX gene family were identified and analyzed by bioinformatics techniques. The eucalyptus WOX gene family members are unstable proteins, with 7 acidic proteins and 24 basic proteins, and no signal peptide region was detected. Subcellular localization prediction indicated that all these proteins are localized in the nucleus. Motif analysis showed that eucalyptus WOX genes share the same motifs. Phylogenetic tree and gene expression analyses revealed that the eucalyptus WOX genes are highly conserved during the evolution process. Moreover, the WOX protein sequences are also highly conserved within the species, with higher similarity between woody plants. The EupWOX gene showed tissue-specific expression, with EupWOX1 and EupWOX11 specifically expressed in the roots of E. urophylla × E. pellita clonal tissue culture during the late-stage rooting. This finding suggests that EupWOX1 may be a key regulatory gene induced by the root primordium and is critically related to the rooting rate. EupWOX1, EupWOX5, and EupWOX13 could be the key regulatory genes for adventitious root formation. EupWOX1, EupWOX5, and EupWOX13 could be the key regulatory genes for the elongation of adventitious roots and the growth of adventitious lateral roots. EupWOX5 and EupWOX13 could play a critical role, not only in the formation of adventitious roots and adventitious lateral roots of E. urophylla clonal tissue culture but also in the root elongation process. These results will help us understand the complexity of rooting in different lines and provide valuable information for future functional characterization of specific genes in eucalyptus clones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call