Abstract
The Gram-positive spore-forming bacterium, Bacillus thuringiensis, a member of the Bacillus cereus group, produces chitosanases that catalyze the hydrolysis of chitosan to chitosan-oligosaccharides (COS). Although fungal and bacterial chitosanases belonging to other glycoside hydrolase (GH) families have been characterized in a variety of microorganisms, knowledge on the genetics and phylogeny of the GH-8 chitosanases remains limited. Nine genes encoding chitosanases were cloned from 29 different serovar strains of B. thuringiensis and they were expressed in Escherichia coli. The ORFs of the chitosanases contained 1,359 nucleotides and the protein products had high levels of sequence identity (>96%) to other Bacillus species GH-8 chitosanases. Thin-layer chromatography and HPLC analyses demonstrated that these enzymes hydrolyzed chitosan to a chitosan-trimer and a chitosan-tetramer as major products, and this could be useful in the production of COS. In addition, a simple plate assay was developed, involving a soluble chitosan, for high-throughput screening of chitosanases. This system allowed screening for mutant enzymes with higher enzyme activity generated by error-prone PCR, indicating that it can be used for directed chitosanase evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.