Abstract
Nucleotide-binding domain (NOD)-like receptors (NLRs), a type of pattern recognition receptor (PRR), specifically recognize pathogen-associated molecular patterns and damage-associated molecular patterns, playing crucial roles in the immune system. Herein, the composition, expression pattern, and co-expressed pathways of NLRs in Pelodiscus sinensis (PsNLRs) were analyzed. Eight PsNLRs, located on seven chromosomes, were first identified from the genome. Phylogenetic analysis revealed that PsNLRs were most closely related to the NLRs of the western painted turtle and the green sea turtle, and could be clustered into four subfamilies. Besides, the expression profile of PsNLRs exhibited tissue-specificity after infection with Aeromonas hydrophila or poly I:C. Nonetheless, PsCIITA and PsNLRP3.2 displayed infection-specific expression patterns, whereas other PsNLRs showed similar expression patterns during A. hydrophila and poly I:C infections. Weighted gene co-expression network analysis found that six PsNLRs were generated in the turquoise module, in which several immune-related signaling pathways were enriched, including “NOD-like receptor signaling pathway”, “NF-κB signaling pathway”, “PI3K-Akt signaling pathway”, “Chemokine signaling pathway”, “Antigen processing and presentation”, and ”Toll-like receptor signaling pathway”. Additionally, three immune-related genes, NF-κB1, TRAF3, and PIK3CG, were identified as hub genes. These results indicated that PsNLRs may play key roles in regulating immune responses in P. sinensis. Overall, an in-depth study of the NLR gene family in P. sinensis would yield insights into developing strategies to combat bacterial and viral infections.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.