Abstract

Citrus is one of the most economically important fruit crops growing in subtropical and tropical regions. Most commercially important Citrus varieties are susceptible to cold; therefore, low and freezing temperatures are the main limiting factors for citrus production in subtropical areas. Since Poncirus trifoliata (L.) Raf. is a cold-hardy, interfertile Citrus relative, it serves as a genetic resource for improving cold tolerance in cold sensitive commercial Citrus species. While gene induced in response to long-term cold acclimation was previously identified in Poncirus, early response of Poncirus to cold has not been explored in detail. To identify early cold-responsive genes, a subtractive cDNA library was constructed using 4-h cold-treated and untreated control Poncirus seedlings in this study. A total of 210 randomly picked clones from the subtracted library with cold-induced genes were sequenced. The sequences obtained from the majority of these clones shared homology with previously identified cold-induced and/or environmental stress-regulated genes in other plants. Reverse northern blot analysis of the expression of these cDNAs with cold-treated and untreated control probes revealed that expression of 64 cDNAs was increased two to 11 fold in response to 4-h cold treatment. While the majority of these genes were related with cell rescue, defense, cell death and aging, transcription, metabolism, protein fate, energy, cellular communication and signal transduction, transport facilitation and development, some of them did not show homology with genes with known functions. Individual expression analysis of nine selected genes by semi-quantitative RT-PCR using mRNA from cold-treated and untreated control plants confirmed that the expression of selected cDNAs was all induced in response to cold. The results demonstrated that although a few genes were commonly induced in response to both short and long-term cold acclimation in Poncirus, majority of early cold-responsive genes were different from previously identified late cold-responsive genes in Poncirus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call