Abstract

Four suppression subtractive hybridization (SSH) cDNA libraries were constructed to identify differentially expressed salinity stress responsive genes of black tiger shrimp, Penaeus monodon exposed to low (3 ppt) salinity conditions. Forward and reverse SSH cDNA libraries were developed from the gill and gut tissues of shrimp and clones having inserts larger than 300 bp were unidirectionally sequenced. Based on the sequence homology search, the identified genes were categorized for their putative functions related to a wide range of biological roles, such as nucleic acid regulation and replication, immune response, energy and metabolism, cell signaling, cellular process, cytoskeleton and membrane structure, stress and osmoregulation. Gene expression levels in response to low salinity conditions at 2 weeks post salinity stress of thirteen selected differentially expressed genes identified from SSH cDNA libraries (14-3-3 like protein, crustin, lysozyme, arginine kinase, Na+/K+-ATPase α-subunit, intracellular fatty acid binding protein, cathepsin B, anti-lipopolysaccharide factor, ferritin, ubiquitin conjugating enzyme E2, calreticulin, innexin 2 and heat shock protein 21) were analyzed by RT-PCR. The highest gene expression levels were observed for Na+/K+-ATPase α-subunit (34.28-folds) in gill tissues, intracellular fatty acid binding protein (13.30-folds) in gut tissues and innexin 2 (14.43-folds) in muscle tissues respectively. The differential and significant levels of gene expression indicate the functional role of these genes in shrimp salinity stress adaptive mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call