Abstract
BackgroundThe dysregulation of sialylation plays a pivotal role in cancer progression and metastasis, impacting various aspects of tumor behavior. This study aimed to investigate the prognostic significance of long non-coding RNAs (lncRNAs) in relation to sialylation. Additionally, we aimed to develop a signature of sialylation-related lncRNAs in the context of bladder cancer.MethodsThis study used transcriptomic data and clinical information from the TCGA (the Cancer Genome Atlas) database to screen for sialylation-related lncRNAs and constructed a prognostic model. The relationships between these lncRNAs and biological pathways, immune cell infiltration, drug sensitivity, etc., were analyzed, and the expression of some lncRNAs was validated at the cellular level.ResultsThis study identified 6 prognostic lncRNAs related to sialylation and constructed a risk score model with high predictive accuracy and reliability. The survival period of patients in the high-risk group was significantly lower than that of the low-risk group, and it was related to various biological pathways and immune functions. In addition, this study found differences in the sensitivity of patients in different risk groups to chemotherapy drugs, providing a reference for personalized treatment.ConclusionIn this study, we examined the relationship between sialylation-related lncRNA and the prognosis of bladder cancer, providing new molecular markers and potential targets for diagnosis and treatment. Our research revealed correlations between sialylation-related lncRNA characteristics and clinicopathological features, potential mechanisms, somatic mutations, immune microenvironment, chemotherapy response, and predicted drug sensitivity in bladder cancer. Additionally, in vitro cellular studies were conducted to validate these findings and lay the groundwork for future clinical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.