Abstract

ABSTRACT Biosolarization is a fumigation alternative that combines solarization with organic amendments to suppress pests and pathogens in agricultural soils. The generation of volatile biopesticides in the soil, stemming from biodegradation of carbon-rich amendments, contributes to pest inactivation. The purpose of this study was to (1) profile volatiles that may contribute to pest control under field conditions and (2) measure volatile compounds that may present nuisance or exposure risks for humans near biosolarized fields where larger-scale anaerobic degradation of residues occurs. Biosolarization was performed using prominent agricultural waste products, hulls and shells from several almond varieties as soil amendments. After 8 days of biosolarization, soil samples were analyzed using solid phase microextraction-gas chromatography coupled to mass spectrometry. Volatile fatty acids and ketones made up 85% of biosolarized soil headspace, but terpenes, alcohols, aldehydes, esters, and sulfides were detected as well. Different almond variety residues produced distinct volatile profiles, and nonpareil-amended soils had a much richer and more diverse profile, as well as a fivefold greater VOC abundance, than pollinator-amended soil. Identified volatiles with low US recommended exposure limits were quantified via internal and external standards, including acetic acid, 2-butanone, butanal, hexanal, and phenylethyl alcohol. Across biosolarization treatments, headspace concentrations of selected compounds did not exceed 1 mg/m3. This study demonstrates that almond processing residues recycled into the soil as biosolarization substrates produce a high diversity of bioactive degradation compounds on a field scale, with low potential of non-target risks to humans. Implications: This manuscript has implications for two policy goals in the state of California: to reduce landfill disposal of organic waste, and to reduce emissions from soil fumigants. Almond hulls and shells are an increasing source of organic waste, and novel recycling strategies must be developed. Here, recycling almond residues as soil amendments promoted the rapid formation of VOCs which may act as alternatives to chemical fumigants. Headspace concentrations of potentially deleterious VOCs produced from treated soil were low, on the order of parts per billion. These results will help achieve policy goals by expanding waste usage and fumigation alternatives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call