Abstract
One hundred forty-eight groundwater samples were collected from the lower part of Wadi Siham catchment area for hydrogeochemical investigations to understand the hydrogeochemical processes affecting groundwater chemistry and their relation with groundwater quality. Groundwater in the study area is abstracted from different aquifers. The study area is characterized by arid climate and extremely high relative humidity. The results indicate that groundwater in the study area is fresh to brackish in nature. The abundance of the major ions is as follows: Na+1 > Ca+2 > Mg+2 ≥ K+1 and Cl−1 > HCO 3 −1 > SO 4 −2 > NO 3 −1 . Various graphical and ionic ration plots, statistical analyses, and saturation indices calculations have been carried out using chemical data to deduce a hydrochemical evaluation of the study area. The prevailing hydrogeochemical processes operating in the study area are dissolution, mixing, evaporation, ion exchange, and weathering of silicate minerals in the eastern part (recharge areas). The reverse ion exchange and seawater intrusion control the groundwater chemistry along the Red Sea coast areas and few parts of the study area. Deterioration in groundwater quality from anthropogenic activities has resulted from saltwater intrusion along the coastal areas due to groundwater overpumping and extensive use of fertilizers and infiltration of sewage water. Salinity and nitrate contamination are the two major problems in the area, which is alarming considering the use of this water for drinking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.