Abstract

Antibiotic-resistant infections are a pressing global concern, causing millions of deaths each year. Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of nosocomial infections in healthcare settings and is increasingly responsible for community-acquired infections that are often more difficult to treat. Antibiotic adjuvants are small molecules that potentiate antibiotics through nontoxic mechanisms and show excellent promise as novel therapeutics. Screening of low-molecular-weight compounds was employed to identify novel antibiotic adjuvant scaffolds for further elaboration. Brominated carbazoles emerged from this screening as lead compounds for further evaluation. Lead carbazoles were able to potentiate several β-lactam antibiotics in three medically relevant strains of MRSA. Gene expression studies determined that these carbazoles were dampening the transcription of key genes that modulate β-lactam resistance in MRSA. The lead brominated carbazoles represent novel scaffolds for elaboration as antibiotic adjuvants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call