Abstract

This paper explores the identification and estimation of nonseparable panel data models. We show that the structural function is nonparametrically identified when it is strictly increasing in a scalar unobservable variable, the conditional distributions of unobservable variables do not change over time, and the joint support of explanatory variables satisfies some weak assumptions. To identify the target parameters, existing studies assume that the structural function does not change over time, and that there are “stayers”, namely individuals with the same regressor values in two time periods. Our approach, by contrast, allows the structural function to depend on the time period in an arbitrary manner and does not require the existence of stayers. In estimation part of the paper, we propose parametric and nonparametric estimators that implement our identification results. Monte Carlo studies indicate that our parametric estimator performs well in finite samples. Finally, we extend our identification results to models with discrete outcomes, and show that the structural function is partially identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.