Abstract
In mammals, spermatogenesis is maintained by spermatogonial stem cells (SSC). In their niche, SSC divide to self-maintain and to produce a transit-amplifying population that eventually enters the meiotic cycle to give rise to spermatozoa. The low number of SSC and the lack of specific markers hinder their isolation and enrichment. Stem cells in several adult tissues can be identified by using their verapamil-sensitive Hoechst dye-effluxing properties, which define the characteristic "side population" (SP). Here we show, by multicolor flow cytometric analysis, that immature mouse testis contains a "side-population" (T-SP), which is Sca-1pos, Ep-CAMpos, EE2 pos, alpha6-integrin pos, and alpha(v)-integrin neg. A 13-fold enrichment in SSC activity was observed when sorted T-SP cells from ROSA 26 mice were transplanted in busulfan-treated mouse testis. Whereas an incomplete range of spermatogenic stages was encountered two months after transplantation of unsorted testicular cells, the transplantation of T-SP cells generated all associations of mouse germ cells representing the full range of spermatogenic stages. These data suggest that Hoechst staining and cell sorting might provide a novel approach to SSC enrichment in mammals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.