Abstract

Microcalorimeter detectors rely on superconducting components and cryogenic temperatures to provide over an order-of-magnitude improvement in energy resolution compared to semiconducting sensors. Resolution improvements impact fields from gamma-ray astrophysics to nuclear safeguards. The temporal response of these detectors has been much slower than predicted from the known device parameters. This discrepancy has been attributed to the dynamics of quasiparticles and phonons in the bulk absorber used for absorbing photons. We will show that long-lived states in the glue used for absorber attachment have been the dominant cause of the slow response. Also, we have fabricated microcalorimeters using metal-to-metal diffusion bonding to attach the absorber. These detectors show a significant improvement in their recovery after gamma-ray events and will now enable study of the internal scattering dynamics of the bulk absorber.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.