Abstract

As a class of water-soluble, fructose-based oligo- and polysaccharides, fructans are major nonstructural carbohydrates and an important carbon source for grain filling in wheat (Triticum aestivum L.). Four enzymes are involved in fructan synthesis in higher plants, and 6-SFT is a key enzyme in fructan biosynthesis. In this study, thirteen single nucleotide polymorphisms were detected in 6-SFT-A2 in 24 wheat accessions, forming three haplotypes. Two cleaved amplified polymorphic sequence markers developed based on polymorphisms at sites 1870(A-G) and 1951(A-G) distinguished the three haplotypes. 6-SFT-A2 was located on chromosome 4A, between markers P2454.3 and P3465.1 in a doubled haploid (DH) population derived from the cross Hanxuan 10 × Lumai 14. The DH population comprising 150 lines and a historical population consisting of 154 accessions were used in a 6-SFT-A2 marker–trait association analysis. The three haplotypes were significantly associated with thousand-grain weight (TGW) under rainfed conditions. HapIII had a significant positive effect on TGW. There were significant differences between the Hanxuan 10 and Lumai 14 genotypes in both rainfed and irrigated environments. The average TGW of Lumai 14 (HapIII) was higher than that of Hanxuan 10 (HapI). The frequencies of 6-SFT-A2 HapIII in cultivars released at different periods showed that it had been strongly positively selected in breeding programs. The preferred HapIII for TGW occurred at higher frequencies in Gansu, Beijing, Shanxi, and Hebei than other regions in northern China.Electronic supplementary materialThe online version of this article (doi:10.1007/s11032-015-0266-9) contains supplementary material, which is available to authorized users.

Highlights

  • Wheat (Triticum aestivum L.) is one of the most important staple food crops globally

  • Two cleaved amplified polymorphic sequence markers developed based on polymorphisms at sites 1870(AG) and 1951(A-G) distinguished the three haplotypes. 6-SFT-A2 was located on chromosome 4A, between markers P2454.3 and P3465.1 in a doubled haploid (DH) population derived from the cross Hanxuan 10 9 Lumai 14

  • Most of the carbon flux from sucrose to fructan in wheat is mediated by 6-SFT (Duchateau et al 1995; Vijn and Smeekens 1999)

Read more

Summary

Introduction

Wheat (Triticum aestivum L.) is one of the most important staple food crops globally. Watersoluble carbohydrates (WSC) accumulated in wheat stems constitute an important carbon source for grain filling. Variation in stem WSC concentration among wheat genotypes is one of the genetic factors considered to influence grain weight and yield in water-limited environments (Asseng and van Herwaarden 2003; Ruuska et al 2006; Xue et al 2008). High WSC concentration is considered to be a potentially useful trait for improving wheat grain weight and yield in water-limited production environments (Blum 1998; Asseng and van Herwaarden 2003; Ruuska et al 2006; Foulkes et al 2007; McIntyre et al 2011, 2012)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.