Abstract

F17 fimbriae are produced by pathogenic Escherichia coli involved in diarrhea and septicemia outbreaks in calves and lambs. These proteins result from the expression of four different clustered genes, namely f17A, f17D, f17C and f17G, encoding a pilin protein, a periplasmic protein, an anchor protein and an adhesin protein, respectively. Several variants of f17A and f17G genes have been reported and found genetically associated with typical virulence factors of bovine pathogenic E. coli strains. In this study, a new F17e-A variant, closely related to F17b-A, was identified from a collection of 58 E. coli isolates from diarrheic calves in Iran. While highly prevalent in Iranian F17-producing clinical isolates from calves, this variant was rare among E. coli from a French healthy adult bovine population, suggesting a possible association with virulence. The f17Ae gene was also found in the genome of the Shiga-like toxin variant Stx1d–producing bovine E. coli strain MHI813, and belonged to a gene cluster also encoding a new F17-G3 variant, which greatly differed from F17-G1 and F17-G2. This gene cluster was located on a pathogenicity island integrated in the tRNA pheV gene. The gene coding for a third new F17f-A variant corresponding to a combination of F17c-A and F17d-A was also identified on the pVir68 plasmid in the bovine pathogenic E. coli strain 6.0900. In conclusion, we identified three new F17-A and F17-G variants in cattle E. coli, which may also have significant impact on the development of new diagnostics and vaccination tools.

Highlights

  • Escherichia coli is a predominant member of the normal aerobic intestinal microflora in mammals

  • Based on specific primers designed in this study, we report a very weak prevalence of F17e-A and F17-G3 in E. coli from healthy adult cattle

  • A new F17e-A variant of the F17 fimbriae major subunit was detected in diarrheic calves in Iran Among the 58 E. coli isolates recovered from diarrheic calves in Iran, various virulence-associated genes were identified, such as the hly, iucD or afaE-VIII genes (Table 3)

Read more

Summary

Introduction

Escherichia coli is a predominant member of the normal aerobic intestinal microflora in mammals. Due to the high genetic plasticity of the E. coli species, some E. coli strains may behave as pathogens and be responsible for a wide range of infections. These infections can be split into intestinal and extra-intestinal infections, such as urinary tract infection (UTI), meningitis or septicemia [1,2]. Despite an obvious association with virulence, the exact role of F17 fimbriae in the pathogenicity of E. coli remains unknown These fimbriae were reported to bind N-acetyl-D-glucosamine (Glc-NAc)-containing receptors present on host intestinal epithelial cells in bovines [4,5]. They consist in fine filamentous heteropolymers composed of two main subunits: the structural major subunit F17-A, whose hundred copies are assembled to form the bulk of the fimbriae, and the adhesin minor subunit F17-G [4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call