Abstract
A mass spectrometric method has been developed for the identification of carbonyl and hydroxyl functional groups, as well as for counting the functional groups, in previously unknown protonated bifunctional oxygen-containing analytes. This method utilizes solution reduction before mass spectrometric analysis to convert the carbonyl groups to hydroxyl groups. Gas-phase ion-molecule reactions of the protonated reduced analytes with neutral trimethylborate (TMB) in a FT-ICR mass spectrometer give diagnostic product ions. The reaction sequence likely involves three consecutive steps, proton abstraction from the protonated analyte by TMB, addition of the neutral analyte to the boron reagent, and elimination of a neutral methanol molecule. The number of methanol molecules eliminated upon reactions with TMB reveals the number of hydroxyl groups in the analyte. Comparison of the reactions of the original and reduced analytes reveals the presence and number of carbonyl and hydroxyl groups in the analyte.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.