Abstract
This paper presents an indirect adaptive neural network (NN) control algorithm tailored for flexible joint robots (FJRs), aimed at achieving desired transient and steady-state performance. To simplify the controller design process, the original higher-order system is decomposed into two lower-order subsystems using the singular perturbation technique (SPT). NNs are then employed to reconstruct the aggregated uncertainties. An adaptive prescribed performance control (PPC) strategy and a continuous terminal sliding mode control strategy are introduced for the reduced slow subsystem and fast subsystem, respectively, to guarantee a specified convergence speed and steady-state accuracy for the closed-loop system. Additionally, a composite-learning optimal bounded ellipsoid algorithm (OBE)-based identification scheme is proposed to update the NN weights, where the tracking errors of the reduced slow and fast subsystems are integrated into the learning algorithm to enhance the identification and tracking performance. The stability of the closed-loop system is rigorously established using the Lyapunov approach. Simulations demonstrate the effectiveness of the proposed identification and control schemes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.