Abstract

Inspired by a direct internal reforming molten carbonate fuel cell (DIR-MCFC) coupled with complicated nonlinear dynamics, the identification and control design of the Hammerstein model is presented. Through the sequential identification procedure, the static nonlinearity block is considered as the wavelet network which is trained and validated by the on-line learning algorithm, and the linear dynamic block is described by the state-space model in which parameters are estimated by the recursive least square algorithm. When a nonlinear inversion via the numerical interpolation technique is established, a composite control framework is used to ensure the good output regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.