Abstract

This study uses electron backscatter diffraction (EBSD) and atomic force microscopy (AFM) to identify secondary calcite in coral skeletons. Secondary calcite appears to have nucleated on the original aragonite dissepiments, producing horizontal structures that mimic the morphology of the original coral aragonite, forming dissepiment-like meniscus structures. The Sr/Ca and δ 18O of the pristine aragonite and secondary calcite were analysed by secondary ion mass spectrometry (SIMS). The effect of calcite inclusion on the mean geochemistry of the coral carbonate and subsequent sea surface temperature (SST) calculations were determined for both Sr/Ca and δ 18O. Inclusion of as little as 1% secondary calcite within the primary coral aragonite elevates the Sr/Ca-derived SST by 1.2 °C and could markedly offset estimates of past tropical climate. Conversely, inclusion of 10% secondary calcite has little effect on the SST estimated from δ 18O (+ 0.6 °C) indicating that this proxy is relatively robust to even large amounts of calcite. The different extents to which the two proxies would be influenced by inadvertent inclusion of such meniscus calcite demonstrate the importance of a multi-proxy approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call