Abstract

AbstractRegulatory elements are important to the regulation of tissue-specific alternative splicing. Here we report a genome-wide analysis of motifs involved in human brain-specific or muscle-specific alternative splicing. Comparing relative abundance of alternative splice forms based on Bayesian statistics, we identified many tissue-specific exon skipping events in normal or tumor samples from brain or muscle. Motifs possibly function in these events were subsequently distinguished using EM algorithm. Analyses of these motifs suggest that some exons are tissue-specifically skipped through a loop out mechanism and motif locations are sometimes important. Furthermore, comparison of motifs in normal and tumor samples suggests that there may exist different tumorigenesis mechanisms between brain and muscle. These results provide some insights into the regulation mechanism of alternative splicing and may throw light on cancer therapy.KeywordsAlternative SpliceExpectation Maximization AlgorithmSplice EnhancerCassette ExonPolypyrimidine Tract BindingThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call