Abstract

Photosynthesis is the process by which dry matter accumulates, which affects rapeseed yield. In this study, we identified GOLDEN2-LIKE1 (GLK1), located on chromosome A07 and 59.2 kb away from the single nucleotide polymorphism marker SNP16353A07, which encodes a transcription factor associated with the rate of photosynthesis in leaves. We then identified 96 GLK1 family members from 53 species using a hidden Markov model (HMM) search and found 24 of these genes, which were derived from 17 Brassicaceae species. Phylogenetic analysis showed that 24 Brassicaceae proteins were classified into three subgroups, named the Brassica family, Adenium arabicum, and Arabidopsis. Using homologous cloning methods, we identified four BnaGLK1 copies; however, the coding sequences were shorter than the putative sequences from the reference genome, probably due to splicing errors among the reference genome sequence or different gene copies being present in the different B. napus lines. In addition, we found that BnaGLK1 genes were expressed at higher levels in leaves with more chloroplasts than were present in other leaves. Overexpression of BnaGLK1a resulted in darker leaves and siliques than observed in the control, suggesting that BnaGLK1 might promote chloroplast development to affect the rate of photosynthesis in leaves. These results will help to elucidate the mechanism of chloroplast biogenesis by GLK1 in B. napus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call