Abstract

Mass spectrometry (MS) has been widely used for specific, sensitive and rapid analysis of proteins and has shown a high potential for bacterial identification and characterization. Type strains of four species of rhizobia and Escherichia coli DH5α were employed as reference bacteria to optimize various parameters for identification and classification of species of rhizobia by matrix-assisted laser desorption/ionization time-of-flight MS (MALDI TOF MS). The parameters optimized included culture medium states (liquid or solid), bacterial growth phases, colony storage temperature and duration, and protein data processing to enhance the bacterial identification resolution, accuracy and reliability. The medium state had little effects on the mass spectra of protein profiles. A suitable sampling time was between the exponential phase and the stationary phase. Consistent protein mass spectral profiles were observed for E. coli colonies pre-grown for 14 days and rhizobia for 21 days at 4°C or 21°C. A dendrogram of 75 rhizobial strains of 4 genera was constructed based on MALDI TOF mass spectra and the topological patterns agreed well with those in the 16S rDNA phylogenetic tree. The potential of developing a mass spectral database for all rhizobia species was assessed with blind samples. The entire process from sample preparation to accurate identification and classification of species required approximately one hour.

Highlights

  • Species of rhizobia are unique bacteria due to their symbiotic relationship with legumes

  • Escherichia coli DH5α and well-characterized type strains of four rhizobial species were chosen as reference strains to investigate bacterial cultivation, colony storage conditions and sampling time for quality and consistent MALDI TOF Mass spectrometry (MS) spectra and profiles for accurate identification of species of rhizobia

  • Protein mass spectral profiles of E. coli during each growth phase were measured to assess the impact on bacterial identification (Figure 1)

Read more

Summary

Introduction

Species of rhizobia are unique bacteria due to their symbiotic relationship with legumes. Escherichia coli DH5α and well-characterized type strains of four rhizobial species were chosen as reference strains to investigate bacterial cultivation, colony storage conditions and sampling time for quality and consistent MALDI TOF MS spectra and profiles for accurate identification of species of rhizobia. The optimized conditions were used to culture 75 rhizobial strains of 4 genera for which a MALDI TOF mass spectral library was constructed and validated with a blind sample. This is a first step to build a protein profile library for identification and classification of species of rhizobia

Materials and Methods
Results
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call