Abstract

Breast cancer remains the leading cause of cancer deaths and the second highest cause of death, in general, among women worldwide. Fortunately, over the last few decades, with the introduction of mammography, the mortality rate of breast cancer has significantly decreased. However, accurate classification of breast masses in mammograms is especially challenging. Various Computer-Aided Diagnosis (CAD) systems are being developed to assist radiologists with the accurate classification of breast abnormalities. In this study, classification of benign and malignant masses, based on the subtraction of temporally sequential digital mammograms and machine learning, is proposed. The performance of the algorithm was evaluated on a dataset created for the purposes of this study. In total, 196 images from 49 patients, with precisely annotated mass locations and biopsy confirmed malignant cases, were included. Ninety-six features were extracted and five feature selection algorithms were employed to identify the most important features. Ten classifiers were tested using leave-one-patient-out and 7-fold cross-validation. Neural Networks, achieved the highest classification performance with 90.85% accuracy and 0.91 AUC, an improvement compared to the state-of-the-art. These results demonstrate the effectiveness of the subtraction of temporally consecutive mammograms for the classification of breast masses as benign or malignant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call