Abstract

Plasmids are important antibiotic resistance determinant carriers that can disseminate various drug resistance genes among species or genera. By using a high throughput sequencing approach, two groups of plasmids of Escherichia coli (named E1 and E2, each consisting of 160 clinical E. coli strains isolated from different periods of time) were sequenced and analyzed. A total of 20 million reads were obtained and mapped onto the known resistance gene sequences. As a result, a total of 9 classes, including 36 types of antibiotic resistant genes, were identified. Among these genes, 25 and 27 single nucleotide polymorphisms (SNPs) appeared, of which 9 and 12 SNPs are nonsynonymous substitutions in the E1 and E2 samples. It is interesting to find that a novel genotype of bla KLUC, whose close relatives, bla KLUC-1 and bla KLUC-2, have been previously reported as carried on the Kluyvera cryocrescens chromosome and Enterobacter cloacae plasmid, was identified. It shares 99% and 98% amino acid identities with Kluc-1 and Kluc-2, respectively. Further PCR screening of 608 Enterobacteriaceae family isolates yielded a second variant (named bla KLUC-4). It was interesting to find that Kluc-3 showed resistance to several cephalosporins including cefotaxime, whereas bla KLUC-4 did not show any resistance to the antibiotics tested. This may be due to a positively charged residue, Arg, replaced by a neutral residue, Leu, at position 167, which is located within an omega-loop. This work represents large-scale studies on resistance gene distribution, diversification and genetic variation in pooled multi-drug resistance plasmids, and provides insight into the use of high throughput sequencing technology for microbial resistance gene detection.

Highlights

  • Multidrug resistant E.coli, a clinically significant pathogen, has become a major threat to human health all over the world[1,2,3]

  • More and more chromosomally encoded antibiotic resistance genes emerge on mobile genetic elements, especially those carried on plasmids which are disseminated

  • Plasmid-mediated quinolone resistance (PMQR) has been discovered, which is related to a variety of genes, including qepA, qnr, oqxAB, aac(6’)-Ib-cr; this resistance occurs through plasmid transfer among different Enterobacteriaceae strains [9,10]

Read more

Summary

Introduction

Multidrug resistant E.coli, a clinically significant pathogen, has become a major threat to human health all over the world[1,2,3] It has become a major cause of hospital-acquired infections worldwide mostly due to rapid acquisition of resistance determinants by horizontal gene transfer via mobile genetic elements such as plasmids, integrons and transposons [4]. Plasmid-mediated quinolone resistance (PMQR) has been discovered, which is related to a variety of genes, including qepA, qnr, oqxAB, aac(6’)-Ib-cr; this resistance occurs through plasmid transfer among different Enterobacteriaceae strains [9,10]. They are unsuitable for detecting the relative abundance of resistance genes in mixed samples which could provide insight into resistance gene epidemic tendency

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.