Abstract

Tarantula venoms provide a model system for studying toxin selectivity, structure-activity relationships and molecular evolution of peptide toxins. Previous studies have identified a large number of peptide toxins in the venom of the Chinese bird spider Haplopelma hainanum, generally regarded as a highly venomous spider. However, the lack of available RNA-seq transcriptomic and genomic data is an obstacle to understanding its venom at the molecular level. In this study, we investigated the venom gland transcriptome of H. hainanum by RNA-seq, in the absence of an available genomic sequence. We identified 201 potential toxins among 57181 de novo assembled transcripts, including knottins, Kunitz-type toxins, enzymes and other proteins. We systematically identified most of the knottins and Kunitz-type toxins, some of which showed strongly biased expression in the venom gland, including members of the huwentoxin-1, huwentoxin-2 and magi-1 families. We also discovered several novel potential toxins. These data demonstrate the high molecular and structural diversity in the venom toxins of H. hainanum. This study offers a useful strategy for exploring the complex components of spider venoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.