Abstract
The WRKY gene family represents an ancient and highly complex group of transcription factors involved in signal transduction pathways of numerous plant developmental processes and host defense response. Up to now, most WRKY proteins have been identified in a few angiosperm species. Identification of WRKY genes in a conifer species would facilitate a comprehensive understanding of the evolutionary and function-adaptive process of this superfamily in plants. We performed PCR on genomic DNA to clone WRKY sequences from western white pine (Pinus monticola), one of the most valuable conifer species endangered by white pine blister rust (Cronartium ribicola). In total, 83 P. monticola WRKY (PmWRKY) sequences were identified using degenerate primers targeted to the WRKY domain. A phylogenetic analysis revealed that PmWRKY members fell into four major groups (1, 2a+2b, 2c, and 2d+2e) described in Arabidopsis and rice. Because of high genetic diversity of the PmWRKY family, a modified AFLP method was used to detect DNA polymorphism of this gene family. Polymorphic fragments accounted for 17%-35% of total PCR products in the AFLP profiles. Among them, one WRKY AFLP marker was linked to the major resistance gene (Cr2) against C. ribicola. The results of this study provide basic genomic information for a conifer WRKY gene family, which will pave the way for elucidating gene evolutionary mechanisms in plants and unveiling the precise roles of PmWRKY in conifer development and defense response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.