Abstract

The binding of atrial natriuretic peptide and C-type natriuretic peptide to the guanylyl cyclase-linked natriuretic peptide receptors A and B (NPR-A and NPR-B), respectively, results in decreases in extracellular volume, vascular tension and cell proliferation. Both NPR-A and NPR-B are extensively phosphorylated in resting cells and receptor dephosphorylation is correlated with ligand-induced homologous desensitization. To understand the role of phosphorylation in the regulation of these receptors, we identified the in vivo phosphorylation sites of NPR-A and NPR-B and found that the phosphorylation of multiple sites within their kinase homology domains is absolutely required for their activation. In this review, we give a detailed description of the phosphopeptide mapping techniques that were used to identify and characterize these sites and discuss the potential pitfalls that are associated with them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call