Abstract

Mechanosensitive channels are ubiquitous in bacteria and provide an essential mechanism to survive sudden exposure to a hypo-osmotic environment by the sensing and release of increased turgor pressure. No mechanosensitive channels have thus far been identified and characterized for the human-specific bacterial pathogen Neisseria gonorrhoeae In this study, we identified and characterized the N. gonorrhoeae MscS-like mechanosensitive channel (Ng-MscS). Electrophysiological analyses by the patch clamp method showed that Ng-MscS is stretch activated and contains pressure-dependent gating properties. Further mutagenesis studies of critical residues forming the hydrophobic vapor lock showed that gain-of-function mutations in Ng-MscS inhibited bacterial growth. Subsequent analysis of the function of Ng-MscS in N. gonorrhoeae by osmotic down-shock assays revealed that the survival of Ng-mscS deletion mutants was significantly reduced compared with that of wild-type strains, while down-shock survival was restored upon the ectopic complementation of mscS Finally, to investigate whether Ng-MscS is important for N. gonorrhoeae during infections, competition assays were performed by using a murine vaginal tract infection model. Ng-mscS deletion mutants were outcompeted by N. gonorrhoeae wild-type strains for colonization and survival in this infection model, highlighting that Ng-MscS contributes to in vivo colonization and survival. Therefore, Ng-MscS might be a promising target for the future development of novel antimicrobials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.