Abstract

Phosphatidylserine decarboxylase 1 (Psd1p) catalyzes the formation of the majority of phosphatidylethanolamine (PE) in the yeast Saccharomyces cerevisiae. Psd1p is localized to mitochondria, anchored to the inner mitochondrial membrane (IMM) through membrane spanning domains and oriented towards the mitochondrial intermembrane space. We found that Psd1p harbors at least two inner membrane-associated domains, which we named IM1 and IM2. IM1 is important for proper orientation of Psd1p within the IMM (Horvath et al., J. Biol. Chem. 287 (2012) 36744–55), whereas it remained unclear whether IM2 is important for membrane-association of Psd1p. To discover the role of IM2 in Psd1p import, processing and assembly into the mitochondria, we constructed Psd1p variants with deletions in IM2. Removal of the complete IM2 led to an altered topology of the protein with the soluble domain exposed to the matrix and to decreased enzyme activity. Psd1p variants lacking portions of the N-terminal moiety of IM2 were inserted into IMM with an altered topology. Psd1p variants with deletions of C-terminal portions of IM2 accumulated at the outer mitochondrial membrane and lost their enzyme activity. In conclusion we showed that IM2 is essential for full enzymatic activity, maturation and correct integration of yeast Psd1p into the inner mitochondrial membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.