Abstract

Here, we show that the embryophyte (land-plant)-specific protein MACERATOR4 (MACET4) binds microtubules in vitro and in vivo, promotes microtubule polymerization at sub-critical tubulin concentrations, decreases the lag phase in microtubule bulk polymerization assays, and colocalizes with microtubule nucleation sites. Furthermore, we find that MACET4 forms oligomers that induce aster formation in vitro in a manner that is similar to aster formation mediated by centrosomes and TPX2. MACET4 is expressed during cell division and accumulates at the microtubule nucleation regions of the plant-specific cytokinetic microtubule array, the phragmoplast. We found that MACET4 localizes to the preprophase band and the cortical division zone, but not the spindle. MACET4 appears as cytoplasmic foci in vivo and forms octamers in vitro Transient expression in tobacco leaf pavement cells results in labeling of shrinking plus- and minus-ends. MACET4 facilitates microtubule depolymerization by increasing the frequency of catastrophes in vivo and by suppressing rescues in vitro Microtubules formed in the presence of MACET4 in vitro are shorter, most likely due to the depletion of the free tubulin pool. Accordingly, MACET4 knockdown results in longer phragmoplasts. We conclude that the direct activity of MACET4 is in promoting microtubule nucleation.This article has an associated First Person interview with the first author of the paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call