Abstract
The mammalian gonadotropin-releasing hormone is evolutionarily related to the arthropod adipokinetic hormone and the recently discovered adipokinetic hormone/corazonin-related peptide (ACP). The function of the ACP signaling system in arthropods is currently unknown. In the present study, we identify and characterize the ACP signaling system in the kissing bug Rhodnius prolixus. We isolated the complete cDNA sequence encoding R. prolixus ACP (Rhopr-ACP) and examined its expression pattern. Rhopr-ACP is predominantly expressed in the central nervous system. In particular, it is found in both the brain and corpus cardiacum (CC)/corpora allata (CA) complex. To gain an insight into its role in R. prolixus, we also isolated and functionally characterized cDNA sequences of three splice variants (Rhopr-ACPR-A, B and C) encoding R. prolixus ACP G protein-coupled receptor (Rhopr-ACPR). Rhopr-ACPR-A has only five transmembrane domains, whereas Rhopr-ACPR-B and C have all seven domains. Interestingly, Rhopr-ACPR-A, B and C were all activated by Rhopr-ACP, albeit at different sensitivities, when expressed in Chinese hamster ovary cells stably expressing the human G-protein G16 (CHO/G16). To our knowledge, this is the first study to isolate a truncated receptor cDNA in invertebrates that is functional in a heterologous expression system. Moreover, Rhopr-ACPR-B and C but not Rhopr-ACPR-A can be coupled with Gq α subunits. Expression profiling indicates that Rhopr-ACPR is highly expressed in the central nervous system, as well as the CC/CA complex, suggesting that it may control the release of other hormones found in the CC in a manner analogous to gonadotropin-releasing hormone. Temporal expression profiling shows that both Rhopr-ACP and Rhopr-ACPR are upregulated after ecdysis, suggesting that this neuropeptide may be involved in processes associated with post-ecdysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.