Abstract

BackgroundPoa L. is a large genus of grass in Gramineae, among which P. pratensis is widely cultivated as turf and forage. Satellite DNA is the main components of the plant genome. Information of satellites will helpful for dissection the genome composition and definition of the phylogeny relationship of these species. However, the knowledge about the satellites in genus Poa is still limited.ResultsFour satellite DNAs were identified using the Repeat Explorer pipeline in HiSeq Illumina reads from diploid plants in P. malaca (2n = 26). Two satellites showed high similarity with the previously identified PpTr-1 and PpTr-3, whereas two others are newly identified with the monomer of 326 bp (Poa-326) and 353 bp (Poa-353) respectively. The clone DNAs of PpTr-1 and PpTr-3, and oligonucleotides designed representing satellites Poa-326 and Poa-353 were probed to test on chromosomes across 13 Poa speceis with different polyploidy level by fluorescent in situ hybridization (FISH). PpTr-1, PpTr-3, and Poa-362 were stably positioned in the subtelomeric regions in nearly all species with the variation of hybridization sites number. However, Poa-353 showed different FISH patterns of multiple regions with the variation of hybridization intensity and distribution sites across species. In addition, 5S rDNA and 45S rDNA were used to characterize the genome of the Poa species. Four rDNA FISH patterns were revealed in the tested species.ConclusionFour identified satellite were high conservable across Poa species. Genome distribution of these satellites can be characterized by FISH. The variation of satellite DNAs and rDNA chromosomal distributions between species provide useful information for phylogenetic analysis in genus Poa.

Highlights

  • Poa L. is a large genus of grass in Gramineae, among which P. pratensis is widely cultivated as turf and forage

  • The results showed that the 365 bp satellite has a high similarity with the tandem repeat PpTr-1 identified in P. pratensis (KY618838.1) with an identity of 98.8% and 100% coverage, and the 189 bp satellite has a high similarity with the tandem repeat PpTr-2 and PpTr-3 in P. pratensis (KY618841.1 and KY618840.1) with the identity of 98.9% and 100% coverage both

  • We thought that the 326 bp and 353 bp satellites are two novel satellite DNAs identified in Poa, and we named them as Poa-362 and Poa-353

Read more

Summary

Introduction

Poa L. is a large genus of grass in Gramineae, among which P. pratensis is widely cultivated as turf and forage. Satellite DNA is the main components of the plant genome. Information of satellites will helpful for dissection the genome composition and definition of the phylogeny relationship of these species. The knowledge about the satellites in genus Poa is still limited. Satellite DNAs are mostly species and genus specific, and usually most variable in abundance and chromosomal distribution between species [5,6,7]. Poa L. is a large genus of grass, including up to 500 species mainly in temperate and arctic zones thought the world [11, 12].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call