Abstract

Improvement of the macro- and micro-elements density of rice (Oryza sativa L.) is gradually becoming a new breeding objective. In this study, the genomic regions associated with potassium, calcium, magnesium and iron content in rice grain were identified and characterized by using a doubled haploid (DH) population. Fifty-six simple sequence repeat (SSR) and one hundred and twelve sequence tagged site (STS) markers were selected to construct the genetic linkage map of the DH population with a full length of 1808.3cM scanning 12 rice chromosomes. Quantitative trait loci (QTLs) were detected, and QTL effects and QTL interactions were calculated for five traits related to macro- and micro-elements in the DH population from a cross between 'Samgang' (Tongil) and 'Nagdong' (Japonica). Twelve QTLs were located on five chromosomes, consisting of two QTLs for potassium, three QTLs for calcium, two QTLs for magnesium, one QTL for iron content and four QTLs for the ratio of magnesium to potassium (Mg/K). Among them, qca1.1 was detected on chromosome 1 with an LOD value of 8.58 for calcium content. It explained 27% of phenotype variations with increasing effects from 'Samgang' allele. Furthermore, fifteen epistatic combinations with significant interactions were observed on ten chromosomes for five traits, which totally accounted for 4.19% to 12.72% of phenotype variations. The screening of relatively accurate QTLs will contribute to increase the efficiency of marker-assisted selection (MAS), and to accelerate the establishment of near-isogenic lines (NILs) and QTL pyramiding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.