Abstract

BackgroundMicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression of target mRNAs involved in plant growth, development, and abiotic stress. As one of the most important model plants, peach (Prunus persica) has high agricultural significance and nutritional values. It is well adapted to be cultivated in greenhouse in which some auxiliary conditions like temperature, humidity, and UVB etc. are needed to ensure the fruit quality. However, little is known about the genomic information of P. persica under UVB supplement. Transcriptome and expression profiling data for this species are therefore important resources to better understand the biological mechanism of seed development, formation and plant adaptation to environmental change. Using a high-throughput miRNA sequencing, followed by qRT-PCR tests and physiological properties determination, we identified the responsive-miRNAs under low-dose UVB treatment and described the expression pattern and putative function of related miRNAs and target genes in chlorophyll and carbohydrate metabolism.ResultsA total of 164 known peach miRNAs belonging to 59 miRNA families and 109 putative novel miRNAs were identified. Some of these miRNAs were highly conserved in at least four other plant species. In total, 1794 and 1983 target genes for known and novel miRNAs were predicted, respectively. The differential expression profiles of miRNAs between the control and UVB-supplement group showed that UVB-responsive miRNAs were mainly involved in carbohydrate metabolism and signal transduction. UVB supplement stimulated peach to synthesize more chlorophyll and sugars, which was verified by qRT-PCR tests of related target genes and metabolites’ content measurement.ConclusionThe high-throughput sequencing data provided the most comprehensive miRNAs resource available for peach study. Our results identified a series of differentially expressed miRNAs/target genes that were predicted to be low-dose UVB-responsive. The correlation between transcriptional profiles and metabolites contents in UVB supplement groups gave novel clues for the regulatory mechanism of miRNAs in Prunus. Low-dose UVB supplement could increase the chlorophyll and sugar (sorbitol) contents via miRNA-target genes and therefore improve the fruit quality in protected cultivation of peaches.

Highlights

  • MicroRNAs are small non-coding RNAs that regulate gene expression of target mRNAs involved in plant growth, development, and abiotic stress

  • We found that the supplement of Ultraviolet radiation B (UVB) radiation can improve the fruit quality and the ability to compete for C-assimilate [35, 36]

  • Different sugar components in leaves were analyzed by High Performance Liquid Chromatography (HPLC) and we found that the carbohydrate contents changed variously under UVB treatment (Fig. 7)

Read more

Summary

Introduction

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression of target mRNAs involved in plant growth, development, and abiotic stress. Transcriptome and expression profiling data for this species are important resources to better understand the biological mechanism of seed development, formation and plant adaptation to environmental change. Using a high-throughput miRNA sequencing, followed by qRT-PCR tests and physiological properties determination, we identified the responsive-miRNAs under low-dose UVB treatment and described the expression pattern and putative function of related miRNAs and target genes in chlorophyll and carbohydrate metabolism. As an important environment signal, sunlight provides energy for the growth and development of plants [1], but its ultraviolet (UV) radiation part causes abiotic stress potentially influence the biological processes of plants. After UVB treatment, UVR8 interacts with the E3 ubiquitin ligase (transducin/WD40 repeat-like superfamily protein) CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), following the ubiquitination of the basic leucinezipper (bZIP family) transcription factor ELONGATED HYPOCOTYL5 (HY5) which is primarily in the initiation of photo-morphogenesis [13,14,15,16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call