Abstract

Matrix-assisted laser desorption/ionization (MALDI) ion trap mass spectrometry is shown to be a powerful tool for the elucidation of protein modifications. Low-energy covalent bonds that originate from certain posttranslational modifications dissociate preferentially to produce characteristic mass spectrometric signatures that prove useful for the accurate, confident identification and characterization of such modifications. Because the MALDI ion trap is an authentic tandem mass spectrometer, it proves feasible to acquire secondary information to test hypotheses as to the nature and site of the putative modifications--further increasing the reliability of the tool. The method combines the advantageous features of MALDI (i.e., the ability to measure the same sample repeatedly, to measure unfractionated complex mixtures without the need for sample cleaning, and to determine peptide mixtures with subpicomole sensitivity) with the ease and the speed of the ion trap measurement. We demonstrate how the unique properties of MALDI ion trap MS can be used to address problems involving the determination of both native posttranslational modifications of proteins (e.g., disulfide mapping, glycosylation determination, and phosphorylation determination) and non-native chemical modifications of proteins (e.g., methionine oxidation and photo-cross-linking of proteins with DNA).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.