Abstract

Membrane proteins are estimated to constitute a quarter of all proteins encoded in plant genomes, yet only a limited number have been experimentally characterized. This is mainly due to the large variation in particular physical properties coupled with purification difficulties. Computational methods are therefore very helpful for the initial characterization of a candidate membrane protein. Individual prediction tools can, with varying levels of success, predict the occurrence of transmembrane spans, the subcellular location, and lipid posttranslational modifications. Since it can be tedious to consult each prediction tool separately, ARAMEMNON has been designed to compile various computational predictions for plant membrane proteins and to present the results via a user-friendly web interface. This protocol describes how to use ARAMEMNON to identify and characterize plant membrane proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.