Abstract

IntroductionCongenital fibrinogen disorders are characterized by heterogeneous clinical manifestations with mutations in the fibrinogen gene cluster. We aimed to describe the molecular genetics and clinical manifestations of fibrinogen abnormalities and perform genotype-phenotype correlations. Materials and methodsGenetic analysis of fibrinogen genes was performed by direct sequencing. The effect of the specific missense variants on fibrinogen structure and function was analyzed using PROVEAN and PolyPhen-2 algorithms and was predicted by protein modeling. ResultsThirteen mutations, including five novel mutations, were identified in the three fibrinogen genes. There was poor correlation between genotypes and phenotypes. All but one of the novel mutations in subjects were predicted to be deleterious. Protein modeling predicted that multiple ienteractions with surrounding residues for novel variants were likely to result in congenital fibrinogen disorders. ConclusionThis study in a relatively large cohort of Chinese patients with congenital fibrinogen disorders enabled the identification of five new fibrinogen missense mutations. In silico modeling may represent a valuable tool for understanding amino acid residues from novel variants leading to congenital fibrinogen disorders, but it should be followed by functional studies. Clinical presentation of fibrinogen disorders was variable, possibly due to genetic and environmental modifiers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.