Abstract

BackgroundThe Humulus japonicus pollen is one of the most common allergenic pollens in China. However, little is unveiled regarding the allergenic components in Humulus japonicus pollen. Our study aimed to purify and identify the pathogenesis-related 1 (PR-1) protein from Humulus japonicus pollen, and to characterize the molecular and immunochemical properties of this novel allergen. MethodsThe natural PR-1 protein (named as Hum j PR-1) was purified from Humulus japonicus pollen extracts with a combined strategy of chromatography, and identified by mass spectrometry. The coding sequence of Hum j PR-1 was confirmed by cDNA cloning. The recombinant Hum j PR-1 was expressed and purified from Escherichia coli. The allergenicity was assessed by immunoblot, enzyme-linked immunosorbent assay (ELISA), inhibition ELISA, and basophil activation test using Humulus japonicus allergic patients’ whole blood. The physicochemical properties and 3-dimensional structure of it were comprehensively characterized by in silico methods. ResultsThe allergenicity analysis revealed that 76.6 % (23/30) of the Humulus japonicus pollen allergic patients displayed specific IgE recognition of the natural Hum j PR-1. The cDNA sequence of Hum j PR-1 had a 516-bp open reading frame encoding 171 amino acids. Physicochemical analysis indicated that Hum j PR-1 was a stable and relatively thermostable protein. Hum j PR-1 shared a similar 3-dimensional folding pattern with other homologous allergens, which was a unique αβα sandwich structure containing 4 α-helices and 6 antiparallel β-sheets, encompassing 4 conserved CAP domain. ConclusionThe natural PR-1 was firstly purified and characterized as a major allergenic allergen in Humulus japonicus pollen. These findings would contribute to developing diagnostic and therapeutic strategies for Humulus japonicus pollinosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.