Abstract

BackgroundMicroRNAs (miRNAs) are a new class of endogenous regulators of a broad range of physiological processes, which act by regulating gene expression post-transcriptionally. The brassica vegetable, broccoli (Brassica oleracea var. italica), is very popular with a wide range of consumers, but environmental stresses such as salinity are a problem worldwide in restricting its growth and yield. Little is known about the role of miRNAs in the response of broccoli to salt stress. In this study, broccoli subjected to salt stress and broccoli grown under control conditions were analyzed by high-throughput sequencing. Differential miRNA expression was confirmed by real-time reverse transcription polymerase chain reaction (RT-PCR). The prediction of miRNA targets was undertaken using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) database and Gene Ontology (GO)-enrichment analyses.ResultsTwo libraries of small (or short) RNAs (sRNAs) were constructed and sequenced by high-throughput Solexa sequencing. A total of 24,511,963 and 21,034,728 clean reads, representing 9,861,236 (40.23%) and 8,574,665 (40.76%) unique reads, were obtained for control and salt-stressed broccoli, respectively. Furthermore, 42 putative known and 39 putative candidate miRNAs that were differentially expressed between control and salt-stressed broccoli were revealed by their read counts and confirmed by the use of stem-loop real-time RT-PCR. Amongst these, the putative conserved miRNAs, miR393 and miR855, and two putative candidate miRNAs, miR3 and miR34, were the most strongly down-regulated when broccoli was salt-stressed, whereas the putative conserved miRNA, miR396a, and the putative candidate miRNA, miR37, were the most up-regulated. Finally, analysis of the predicted gene targets of miRNAs using the GO and KO databases indicated that a range of metabolic and other cellular functions known to be associated with salt stress were up-regulated in broccoli treated with salt.ConclusionA comprehensive study of broccoli miRNA in relation to salt stress has been performed. We report significant data on the miRNA profile of broccoli that will underpin further studies on stress responses in broccoli and related species. The differential regulation of miRNAs between control and salt-stressed broccoli indicates that miRNAs play an integral role in the regulation of responses to salt stress.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-014-0226-2) contains supplementary material, which is available to authorized users.

Highlights

  • MicroRNAs are a new class of endogenous regulators of a broad range of physiological processes, which act by regulating gene expression post-transcriptionally

  • Sequence analysis of sRNAs In order to identify the miRNAs responding to salt stress, we constructed and sequenced sRNA libraries ranging in size from 18 to 30 nt, from both control and salt-stressed broccoli

  • The results showed that only 2,419,170 (15.10%) of the unique sequences and 29,295,190 (64.32%) of the total sequences were shared between the two samples (Figure 1B), suggesting that the sequence results were reliably representative of the endogenous sRNAs in broccoli

Read more

Summary

Introduction

MicroRNAs (miRNAs) are a new class of endogenous regulators of a broad range of physiological processes, which act by regulating gene expression post-transcriptionally. Little is known about the role of miRNAs in the response of broccoli to salt stress. MicroRNAs (miRNAs) are a class of non-coding small RNAs (sRNAs), approximately 20–24 nucleotides in length, that post-transcriptionally regulate gene expression. Highly conserved and species-specific miRNAs control a vast array of biological processes, such as leaf polarity, flower development and stress responses [1,2]. The mature miRNA strands have high complementarity (fewer than four mismatches) to their target mRNAs and regulate gene expression via mRNA cleavage [3,4,5]. Plant miRNAs have usually been identified either by prediction through bioinformatics or by experimental methods [8]. 7384 sequences of mature miRNAs have been identified in plants, including 337 from A. thaliana, 384 from A. lyrata, 713 from O. sativa and 43 from B. rapa (miRBase release 20.0, June, 2013, http:// mirbase.org/)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call