Abstract

To characterize methyltransferases involved in the biosynthesis of benzylisoquinoline alkaloids in Stephania intermedia. Three N-methyltransferases, SiCNMT1, SiCNMT2, SiCNMT3, and O-methyltransferase SiSOMT were identified in Stephania intermedia. Then, four methyltransferase genes were cloned into the pGEX-6P-1 vector. The recombinant vectors were transformed into Escherichia coli BL21(DE3) for expression and were functionally tested. SiCNMT1, SiCNMT2, and SiCNMT3 could methylate (R)-coclaurine to produce (R)-N-methylcoclaurine. SiCNMT2 further methylated the product of (R)-N-methylcoclaurine to produce (R)-magnocurarine. Similarly, (R)-norcoclaurine was continuously catalyzed to yield (R)-N-methylnorcoclaurine and (R)-N, N-dimethylnorcoclaurine by SiCNMT2. Furthermore, SiSOMT was shown to catalyze the conversion of (S)-scoulerine to (S)-tetrahydropalmatine. The key methyltransferases, which were in the last step biosynthesis of (R)-magnocurarine, (R)-N, N-dimethylnorcoclaurine and (S)-tetrahydropalmatine were revealed and their activities were verified in vitro. Four novel methyltransferases will be promising candidates for methylation of benzylisoquinoline alkaloids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call