Abstract

The major leptin-containing membrane compartment was identified and characterized in rat adipose cells by means of equilibrium density and velocity sucrose gradient centrifugation. This compartment appears to be different from peptide-containing secretory granules present in neuronal, endocrine, and exocrine cells, as well as from insulin-sensitive GLUT-4-containing vesicles abundant in adipocytes. Exocytosis of both leptin- and GLUT-4-containing vesicles can be induced by insulin; however, only leptin secretion is responsive to serum stimulation. This latter effect is resistant to cycloheximide, suggesting that serum triggers the release of a stored pool of presynthesized leptin molecules. We conclude that regulated secretion of leptin and insulin-dependent translocation of GLUT-4 represent different pathways of membrane trafficking in rat adipose cells. NIH 3T3 cells ectopically expressing CAAT box enhancer binding protein-alpha and Swiss 3T3 cells expressing peroxisome proliferator-activated receptor-gamma undergo differentiation in vitro and acquire adipocyte morphology and insulin-responsive glucose uptake. Only the former cell line, however, is capable of leptin secretion. Thus different transcriptional mechanisms control the developmental onset of these two major and independent physiological functions in adipose cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call