Abstract
The Cdc7 serine/threonine kinase activates the initiation of DNA replication by phosphorylating MCM proteins that are bound to the origins of DNA replication. We reported previously that human Cdc7 nuclear import is mediated directly by importin-beta through its binding to the Cdc7 nuclear localization sequence (NLS). Here, we report that human Cdc7 nuclear localization is regulated by two additional elements: nuclear retention (NRS) and export sequences (NES). Cdc7 proteins imported into the nucleus are retained in the nucleus by associating with chromatin, for which NRS-(306-326) is essential. Importantly, this binding appears to be specific to the origin of DNA replication, because the binding of wild-type Cdc7 to origin is 2.4-fold higher than to non-origin DNA. Furthermore, an NRS-defective Cdc7 mutant could not be retained in the nucleus, although it was imported into the nucleus normally. Together, our data suggest that NRS plays an important role in the activation of DNA replication by Cdc7. The Cdc7 proteins unassociated with chromatin are bound by CRM1 via two NES elements: NES1 at 458-467 within kinase insert III, and NES2 at 545-554 within the kinase IX domain. The primary function of the Cdc7-CRM1 association may be to translocate nuclear Cdc7 to the cytoplasm. However, the binding of CRM1 with Cdc7 at NES2 raises an interesting possibility that CRM1 may also down-regulate Cdc7 by masking its kinase domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.