Abstract
Haemophilus influenzae, a strict human pathogen, acquires iron in vivo through the direct binding and removal of iron from human transferrin by an as yet uncharacterized process at the bacterial cell surface. In this study, the tbpA and tbpB genes of H. influenzae, encoding the transferrin-binding proteins Tbp1 and Tbp2, respectively, were cloned and sequenced. Alignments of the H. influenzae Tbp1 and Tbp2 protein sequences with those of related proteins from heterologous species were analyzed. On the basis of similarities between these and previously characterized proteins, Tbp1 appears to be a member of the TonB-dependent family of outer membrane proteins while Tbp2 is lipid modified by signal peptidase II. Isogenic mutants deficient in expression of Tbp1 or Tbp2 or both proteins were prepared by insertion of the Tn903 kanamycin resistance cassette into cloned sequences and reintroduction of the interrupted sequences into the wild-type chromosome. Binding assays with the mutants showed that a significant reduction in transferrin-binding ability resulted from the loss of either of the Tbps and a complete loss of binding was evident when neither protein was expressed. Loss of either Tbp2 or both proteins correlated with an inability to grow on media supplemented with transferrin-bound iron as the sole source of iron, whereas the Tbp1+ Tbp2- mutant was able to grow only at high transferrin concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.