Abstract

BackgroundGenome annotation projects, gene functional studies, and phylogenetic analyses for a given organism all greatly benefit from access to a validated full-length cDNA resource. While increasingly common in model species, full-length cDNA resources in aquaculture species are scarce.Methodology and Principal FindingsThrough in silico analysis of catfish (Ictalurus spp.) ESTs, a total of 10,037 channel catfish and 7,382 blue catfish cDNA clones were identified as potentially encoding full-length cDNAs. Of this set, a total of 1,169 channel catfish and 933 blue catfish full-length cDNA clones were selected for re-sequencing to provide additional coverage and ensure sequence accuracy. A total of 1,745 unique gene transcripts were identified from the full-length cDNA set, including 1,064 gene transcripts from channel catfish and 681gene transcripts from blue catfish, with 416 transcripts shared between the two closely related species. Full-length sequence characteristics (ortholog conservation, UTR length, Kozak sequence, and conserved motifs) of the channel and blue catfish were examined in detail. Comparison of gene ontology composition between full-length cDNAs and all catfish ESTs revealed that the full-length cDNA set is representative of the gene diversity encoded in the catfish transcriptome.ConclusionsThis study describes the first catfish full-length cDNA set constructed from several cDNA libraries. The catfish full-length cDNA sequences, and data gleaned from sequence characteristics analysis, will be a valuable resource for ongoing catfish whole-genome sequencing and future gene-based studies of function and evolution in teleost fishes.

Highlights

  • A well characterized full-length cDNA set from catfish (Ictalurus spp.) will be crucial for studying gene duplication and gene family structures in this and closely related species, as well as aiding in the annotation of the catfish genome which is currently being sequenced

  • This study describes the first catfish full-length cDNA set constructed from several cDNA libraries

  • The catfish full-length cDNA sequences, and data gleaned from sequence characteristics analysis, will be a valuable resource for ongoing catfish whole-genome sequencing and future gene-based studies of function and evolution in teleost fishes

Read more

Summary

Introduction

A well characterized full-length cDNA set from catfish (Ictalurus spp.) will be crucial for studying gene duplication and gene family structures in this and closely related species, as well as aiding in the annotation of the catfish genome which is currently being sequenced. Reconstructing overlapping ESTs obtained by singlepass sequencing of random cDNA clones can predict transcript sequences. These EST reconstructions are prone to errors due to assembly of alternative splice forms, pseudogenes, and other highly similar transcript sequences including gene family members and allelic variants. Gene functional studies, and phylogenetic analyses for a given organism all greatly benefit from access to a validated full-length cDNA resource. While increasingly common in model species, fulllength cDNA resources in aquaculture species are scarce

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call