Abstract

Mass spectrometry is the most sensitive and specific analytical technique available for protein identification and quantification. Over the past 10 years, by the use of mass spectrometric techniques hundreds of previously unknown proteins have been identified as DNA-binding proteins that are involved in the regulation of gene expression, replication, or DNA repair. Beyond this task, the applications of mass spectrometry cover all aspects from sequence and modification analysis to protein structure, dynamics, and interactions. In particular, two new, complementary ionization techniques have made this possible: matrix-assisted laser desorption/ionization and electrospray ionization. Their combination with different mass-over-charge analyzers and ion fragmentation techniques, as well as specific enzymatic or chemical reactions and other analytical techniques, has led to the development of a broad repertoire of mass spectrometric methods that are now available for the identification and detailed characterization of DNA-binding proteins. These techniques, how they work, what their requirements and limitations are, and selected examples that document their performance are described and discussed in this chapter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.