Abstract

The antitumor effect of Pt-based drugs is determined by their binding activity with deoxyribonucleic acid (DNA), and understanding the reaction process in a systematic manner is crucial. However, existing assays used for DNA-Pt research suffer from several issues, such as complicated sample preparation, preamplification, and expensive instruments, which dramatically limit their practical application. In this study, a novel method was presented to investigate the adducts of DNA and oxaliplatin using an α-hemolysin nanopore sensor. This approach allows for real-time monitoring of the DNA-oxaliplatin condensation process through the detection of nanopore events associated with DNA-oxaliplatin adducts. Specifically, type I and II signals exhibiting specific current characteristics were observed during the process. Typical signals with high frequency were obtained by recording the designed DNA sequence. Furthermore, the production of these signals was confirmed to be independent of homologous adducts. This finding suggests that the DNA-oxaliplatin adduct can serve as a potential sensor for detecting oxaliplatin lesions and multiple types of molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call