Abstract

Phosphatidylcholine is a major phospholipid which is shown to be involved in stress adaptation. Phosphatidylcholine increased during dehydration in Craterostigma plantagineum, and therefore we characterized CTP:phosphocholine cytidylyltransferase (CpCCT1), a key regulatory enzyme for phosphatidylcholine synthesis in plants. The CpCCT1 gene from the resurrection plant C. plantagineum was cloned and the amino acid sequence was compared with homologs from other species including yeast and rat. CCT proteins have conserved catalytic and membrane-binding domains while the N-terminal and C-terminal domains have diverged. The tissue specific expression analysis indicated that CpCCT1 is expressed in all tested tissues and it is induced by dehydration and in response to 0.5 M NaCl solutions. In plants exposed to low temperature in the dark, the CpCCT1 transcript increased after 4 h at 4 °C. CpCCT1 expression also increased during mannitol and sorbitol treatments in a concentration dependent manner. Phytohormones such as abscisic acid and indole-3-acetic acid also trigged transcript accumulation. Comparisons of transcript and protein accumulations for different treatments (except for dehydration) suggest transcriptional and translational control mechanisms. Analysis of promoter activity and polysome occupancy suggest that CpCCT1 gene expression is mainly under translational regulation during dehydration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call