Abstract

The importance of regulating the cellular concentrations of the myristoylated alanine-rich C kinase substrate (MARCKS), a major cellular substrate of protein kinase C, is indicated by the fact that mice lacking MARCKS exhibit gross abnormalities of central nervous system development and die shortly after birth. We previously identified a novel means of regulating cellular MARCKS concentrations that involved a specific proteolytic cleavage of the protein and implicated a cysteine protease in this process (Spizz, G., and Blackshear, P. J. (1996) J. Biol. Chem. 271, 553-562). Here we show that p40, the carboxyl-terminal fragment resulting from this cleavage of MARCKS, was associated with the mitochondrial/lysosomal pellet fraction of human diploid fibroblasts and that its generation in cells was sensitive to treatment with NH4Cl. These data suggest the involvement of lysosomes in the generation and/or stability of p40. The MARCKS-cleaving enzyme (MCE) activity was peripherally associated with a 10,000 x g pellet fraction from bovine liver, and it co-purified with the activity and immunoreactivity of a lysosomal protease, cathepsin B. Cathepsin B catalyzed the generation of p40 from MARCKS in a cell-free system and behaved similarly to the MCE with respect to mutants of MARCKS previously shown to be poor substrates for the MCE. Treatment of fibroblasts with a cell-permeable, specific inhibitor of cathepsin B, CA074-Me, resulted in parallel time- and concentration-dependent inhibition of cathepsin B and MCE activity. Incubation of a synthetic MARCKS phosphorylation site domain peptide with purified cathepsin B resulted in cleavage of the peptide at sites consistent with preferred cathepsin B substrate sites. These data provide evidence for the identity of the MCE as cathepsin B and suggest that this cleavage most likely takes place within lysosomes, perhaps as a result of specific lysosomal targeting sequences within the MARCKS primary sequence. The data also suggest a direct interaction between MARCKS and cathepsin B in cells and leave open the possibility that MARCKS may in some way regulate the protease for which it is a substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.