Abstract
Paracoccus denitrificans has been identified as a representative strain with heterotrophic nitrification-aerobic denitrification capabilities (HN-AD), and demonstrates strong denitrification proficiency. Previously, we isolated the DYTN-1 strain from activated sludge, and it has showcased remarkable nitrogen removal abilities and genetic editability, which positions P. denitrificans DYTN-1 as a promising chassis cell for synthetic biology engineering, with versatile pollutant degradation capabilities. However, the strain's low stability in plasmid conjugation transfer efficiency (PCTE) hampers gene editing efficacy, and is attributed to its restriction modification system (R-M system). To overcome this limitation, we characterized the R-M system in P. denitrificans DYTN-1 and identified a DNA endonuclease and 13 DNA methylases, with the DNA endonuclease identified as HNH endonuclease. Subsequently, we developed a plasmid artificial modification approach to enhance conjugation transfer efficiency, which resulted in a remarkable 44-fold improvement in single colony production. This was accompanied by an increase in the frequency of positive colonies from 33.3% to 100%. Simultaneously, we cloned, expressed, and characterized the speculative HNH endonuclease capable of degrading unmethylated DNA at 30°C without specific cutting site preference. Notably, the impact of DNA methylase M9 modification on the plasmid was discovered, significantly impeding the cutting efficiency of the HNH endonuclease. This revelation unveils a novel R-M system in P. denitrificans and sheds light on protective mechanisms employed against exogenous DNA invasion. These findings pave the way for future engineering endeavors aimed at enhancing the DNA editability of P. denitrificans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.