Abstract

We previously reported that a region of the Escherichia coli chromosome at 18 min increased E sigma E activity when cloned in multicopy (J. Mecsas, P. E. Rouviere, J. W. Erickson, T. J. Donohue, and C. A. Gross, Genes Dev. 7:2618-2628, 1993). In the present report, we identify and characterize the gene responsible for the increase in E sigma E activity. This gene is in a monocistronic operon with two promoters and a rho-independent terminator. Sequence analysis of this gene indicated that it encodes an outer membrane protein which is 83% identical to OmpX in Enterobacter cloacae, leading us to name this gene ompX. There are four other proteins that are homologous to OmpX. Several of these proteins, Ail of Yersinia enterocolitica and Rck and PagC of Salmonella typhimurium, have properties that allow bacteria to adhere to mammalian cells, survive exposure to human serum, and/or survive within macrophages. We therefore characterized strains deleted for ompX for their growth phenotypes, E sigma E activity, serum resistance, and adherence to mammalian cells. No differences in growth rates, serum resistance, or adherence to mammalian cells were observed; however, E sigma E activity was dependent on expression of OmpX in certain strain backgrounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.